ATP-dependent degradation of a mutant serine: pyruvate/alanine:glyoxylate aminotransferase in a primary hyperoxaluria type 1 case

نویسندگان

  • K Nishiyama
  • T Funai
  • S Yokota
  • A Ichiyama
چکیده

Primary hyperoxaluria type 1 (PH 1), an inborn error of glyoxylate metabolism characterized by excessive synthesis of oxalate and glycolate, is caused by a defect in serine:pyruvate/alanine:glyoxylate aminotransferase (SPT/AGT). This enzyme is peroxisomal in human liver. Recently, we cloned SPT/AGT-cDNA from a PH 1 case, and demonstrated a point mutation of T to C in the coding region of the SPT/AGT gene encoding a Ser to Pro substitution at residue 205 (Nishiyama, K., T. Funai, R. Katafuchi, F. Hattori, K. Onoyama, and A. Ichiyama. 1991. Biochem. Biophys. Res. Commun. 176:1093-1099). In the liver of this patient, SPT/AGT was very low with respect to not only activity but also protein detectable on Western blot and immunoprecipitation analyses. Immunocytochemically detectable SPT/AGT labeling was also low, although it was detected predominantly in peroxisomes. On the other hand, the level of translatable SPT/AGT-mRNA was higher than normal, indicating that SPT/AGT had been synthesized in the patient's liver at least as effectively as in normal liver. Rapid degradation of the mutant SPT/AGT was then demonstrated in transfected COS cells and transformed Escherichia coli, accounting for the low level of immunodetectable mutant SPT/AGT in the patient's liver. The mutant SPT/AGT was also degraded much faster than normal in an in vitro system with a rabbit reticulocyte extract, and the degradation in vitro was ATP dependent. These results indicate that a single amino acid substitution in SPT/AGT found in the PH1 case leads to a reduced half-life of this protein. It appears that the mutant SPT/AGT is recognized in cells as an abnormal protein to be eliminated by degradation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further studies on the activity and subcellular distribution of alanine:glyoxylate aminotransferase in the livers of patients with primary hyperoxaluria type 1.

1. The activity of alanine:glyoxylate aminotransferase (AGT; EC 2.6.1.44) has been measured in the unfractionated livers of 20 patients with primary hyperoxaluria type 1 (PH1), three patients with other forms of primary hyperoxaluria and one PH1 heterozygote. The subcellular distribution of AGT activity was examined in four of the PH1 livers and in the liver of the PH1 heterozygote. 2. The mean...

متن کامل

Human wild-type alanine:glyoxylate aminotransferase and its naturally occurring G82E variant: functional properties and physiological implications.

Human hepatic peroxisomal AGT (alanine:glyoxylate aminotransferase) is a PLP (pyridoxal 5'-phosphate)-dependent enzyme whose deficiency causes primary hyperoxaluria Type I, a rare autosomal recessive disorder. To acquire experimental evidence for the physiological function of AGT, the K(eq),(overall) of the reaction, the steady-state kinetic parameters of the forward and reverse reactions, and ...

متن کامل

A Novel Mutation of Human Liver Alanine:Glyoxylate Aminotransferase Causes Primary Hyperoxaluria Type 1: Immunohistochemical Quantification and Subcellular Distribution

A novel alanine:glyoxylate aminotransferase (AGT) mutation involved in primary hyperoxaluria type 1 (PH1) was studied in Japanese patients. Two mutations in exon 7, c.751T>A and c.752G>A, lead to a W251K amino acid substitution. Proband 1 (patient 1) was homozygous for the W251K mutation allele (DDBJ Accession No. AB292648), and AGT-specific activity in the patient's liver was very low. To reve...

متن کامل

In Silico Modeling of Liver Metabolism in a Human Disease Reveals a Key Enzyme for Histidine and Histamine Homeostasis

Primary hyperoxaluria type I (PH1) is an autosomal-recessive inborn error of liver metabolism caused by alanine:glyoxylate aminotransferase (AGT) deficiency. In silico modeling of liver metabolism in PH1 recapitulated accumulation of known biomarkers as well as alteration of histidine and histamine levels, which we confirmed in vitro, in vivo, and in PH1 patients. AGT-deficient mice showed decr...

متن کامل

Isolation and characterization of an L-alanine: glyoxylate aminotransferase from human liver.

L-Alanine:glyoxylate aminotransferase was isolated from human liver and purified 900-fold. Pyridoxal phosphate was required for catalytic activity and enhanced the stability of the enzyme during purification and storage. The enzyme underwent activation when heated for 10 min in 10 PM pyridoxal phosphate. Activation resulted in the formation of a nondialyzable pyridoxal phosphate complex with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 123  شماره 

صفحات  -

تاریخ انتشار 1993